## Structure Reports <br> Online

ISSN 1600-5368

## Liang-Ce Rong,* Xiao-Yue Li, Chang-Sheng Yao, Hai-Ying Wang and Da-Qing Shi

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail:
Icrong2005@yahoo.com

## Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
$R$ factor $=0.069$
$w R$ factor $=0.186$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
# 9-(3,4-Dichlorophenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione 

The title compound, $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{2}$, was synthesized by the reaction of 5,5-dimethylcyclohexane-1,3-dione with 3,4dichlorobenzaldehyde and ammonium acetate under solvent-free conditions at 353 K . X-ray analysis reveals that the dihydropyridine and cyclohexene rings adopt envelope conformations.

## Comment

The solvent-free reaction has attracted great attention in recent years (Tanaka \& Toda, 2000) and has proved to have many advantages: reduced pollution, low costs, and simplicity in process and handling. 1,4-Dihydropyridines are well known compounds, as a consequence of their pharmacological profile as calcium channel modulators (Janis et al., 1987), which have become almost indispensible for the treatment of cardiovascular diseases such as hypertension, cardiac arrhythmia and angina. The discovery of acridines as antimalarial and antitumor agents has attracted the attention of organic chemists and thus led to intensive interest in the synthesis of several drugs based on acridine (Khurana et al., 1990; Matsumoto et al., 1983). We report here the crystal structure of the title compound, (I), which was synthesized by the solvent-free reaction of 5,5-dimethylcyclohexane-1,3-dione and 3,4dichlorobenzaldehyde and ammonium acetate at 353 K .

(I)

In (I) (Fig. 1), the dihydropyridine ring is in an envelope conformation, with atom C 7 deviating from the $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 8 /$ $\mathrm{C} 13 / \mathrm{N} 1$ plane by 0.189 (8) $\AA$. Both cyclohexene rings adopt envelope conformations: atom C3 deviates from the C1/C2/ C4-C6 plane by 0.659 (9) $\AA$ and atom C11 deviates from the $\mathrm{C} 8-\mathrm{C} 10 / \mathrm{C} 12 / \mathrm{C} 13$ plane by 0.602 (9) $\AA$. The dihedral angle between the $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 8 / \mathrm{C} 13 / \mathrm{N} 1$ and $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 4-\mathrm{C} 6$ planes is $6.8(4)^{\circ}$, and that between the $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 8 / \mathrm{C} 13 / \mathrm{N} 1$ and $\mathrm{C} 8-\mathrm{C} 10 /$ $\mathrm{C} 12 / \mathrm{C} 13$ planes is $3.5(4)^{\circ}$. The dichlorophenyl group is twisted away from the $\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 8 / \mathrm{C} 13 / \mathrm{N} 1$ plane by 83.2 (1) ${ }^{\circ}$.

The crystal packing shows that intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules into a chain along the $a$ axis (Fig. 2).

Received 28 February 2006
Accepted 4 March 2006
$\qquad$


Figure 1
The structure of (I), showing $40 \%$ probability displacement ellipsoids and the atom-numbering scheme.


Figure 2
A view of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded (dashed lines) chain in (I).

## Experimental

Compound (I) was prepared by the reaction of 5,5-dimethylcyclo-hexane-1,3-dione ( $4 \mathrm{mmol}, 0.560 \mathrm{~g}$ ) with 3,4-dichlorobenzaldehyde ( $2 \mathrm{mmol}, 0.350 \mathrm{~g}$ ) and $\mathrm{NH}_{4} \mathrm{OAc}(3 \mathrm{mmol}, 0.231 \mathrm{~g}$ ) under solvent-free conditions. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

## Crystal data

$\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{2}$
$M_{r}=418.34$
Orthorhombic, $P n a 2_{1}$
$a=14.155$ (3) $\AA$
$b=14.352$ (3) $\AA$
$c=10.704(3) \AA$
$V=2174.6(9) \AA^{3}$
$Z=4$
$D_{x}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$

## Mo $K \alpha$ radiation

Cell parameters from 1556
reflections
$\theta=2.4-18.8^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.43 \times 0.40 \times 0.38 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.876, T_{\text {max }}=0.889$
10745 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.069$
$w R\left(F^{2}\right)=0.186$
$S=1.01$
3745 reflections
253 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0795 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.74 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \quad 1745 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.09(14)
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$ | 0.86 | 1.85 | $2.708(6)$ | 174 |

Symmetry code: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z$.
H atoms were placed in geometrically idealized positions $(\mathrm{N}-\mathrm{H}=$ $0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ ) and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, N)$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of the Education Committee of Jiangsu Province, and the Natural Science Foundation of Xuzhou Normal University for financial support (grant No. 04XLB14).

## References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Janis, R. A., Silver, P. J. \& Triggle, D. J. (1987). Adv. Drug. Res. 16, 309-591.
Khurana, J. M., Maikap, G. C. \& Mehta, S. (1990). Synthesis, pp. 731-732.
Matsumoto, H., Arai, T., Takahashi, M., Ashizawa, T., Nakano, T. \& Nagai, Y. (1983). Bull. Chem. Soc. Jpn, 56, 3009-3014.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tanaka, K. \& Toda, F. (2000). Chem. Rev. 100, 1025-1074.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

